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Cooled oil emulsion droplets in aqueous surfactant solution have been observed to flatten into a remarkable
host of polygonal shapes with straight edges and sharp corners, but different driving mechanisms — (i) a partial
phase transition of the liquid bulk oil into a plastic rotator phase near the droplet interface and (ii) buckling of the
interfacially frozen surfactant monolayer enabled by drastic lowering of surface tension — have been proposed.
Here, combining experiment and theory, we analyse the hitherto unexplored initial stages of the evolution of these
‘shape-shifting’ droplets, during which a polyhedral droplet flattens into a polygonal platelet under cooling and
gravity. Using reflected-light microscopy, we reveal how icosahedral droplets evolve through an intermediate
octahedral stage to flatten into hexagonal platelets. This behaviour is reproduced by a theoretical model of the
phase transition mechanism, but the buckling mechanism can only reproduce the flattening if surface tension
decreases by several orders of magnitude during cooling so that the flattening is driven by buoyancy. The analysis
thus provides further evidence that the first mechanism underlies the ‘shape-shifting’ phenomena.

I. INTRODUCTION

The culmination of the geometric preoccupations of An-
cient Greece was doubtless the classification of the five pla-
tonic solids [1]. It is topology, however, that dictates that one
of their number, the icosahedron, should abound in nature,
among the shapes of virus capsids and other biological struc-
tures [2]: Euler’s formula implies the formation of at least
twelve topological defects in a hexagonal lattice on the surface
of a spherical vesicle. By virtue of their elastic properties [3],
these defects repel each other [4] to arrange at the vertices of
a platonic icosahedron.

These same topological considerations play their part in the
phenomenon of ‘shape-shifting’ droplets reported by Denkov
et al. [5]: micron-sized oil droplets in aqueous surfactant so-
lution flatten, upon slow cooling, into a plethora of polygonal
shapes with straight edges and sharp vertices (Fig. 1). Al-
though first revealed briefly over a decade ago [6, 7], these
phenomena generated a veritable flurry of largely experimen-
tal papers [5, 8–18] only more recently. These studies re-
vealed that the shape-shifting phenomena arise for a humon-
gous range of surfactants and pure organic phases or mixtures
thereof [9, 11], and showed how to harness these phenom-
ena for efficient, controlled self-emulsification [10, 12]. More
recent studies demonstrated their manufacturing potential by
synthesizing small polymeric particles [13, 17]; scaled-up ver-
sions of these bottom-up approaches may enable massively
parallel control over internally determined particle shape and
particle uniformity that are currently only available in top-
down approaches such as lithography techniques [13, 17].

In spite of this large number of experimental studies and
these manufacturing applications, the mechanisms underlying
these phenomena remain debated, although there is agree-
ment that the initial deformations of the droplets are caused by
freezing of the surfactant adsorption layer [5, 8, 14–16] and the
ensuing topological frustration of the hexagonal packing of the
surfactant molecules therein, leading to a transient icosahedral

shape [14–16]. Two driving mechanisms for the subsequent
deformations have however been proposed: (i) a partial phase
transition of the bulk oil phase [5, 8, 9, 12], and (ii) elastic buck-
ling of the frozen surfactant layer [14–16]. According to the
first mechanism, the formation of a plastic rotator phase [19]
of self-assembled oil molecules with long-range translational
order becomes energetically favourable next to the droplet sur-
face due to the freezing of the surfactant layer. This rotator
phase then arranges into a scaffold of plastic rods at the sur-
face of the droplet supporting the faceted droplet structure.
We have shown in earlier theoretical work [20] that the rotator
phase mechanism can account for the sequence of polygonal
shapes seen in experiments, the statistics of shape outcomes
and the observation that some droplets puncture in their cen-
tre before freezing [5]. According to the second mechanism,
elastic deformations can dominate over surface energy due to
ultra-low values of surface tension resulting from the cooling.
The early three-dimensional polyhedral stages of the droplet

evolution, from an initial icosahedron down to a flattened
hexagon (Fig. 1), have so far remained unexplored, however.
They are the subject of this paper: here, we analyse the flat-
tening of an icosahedral droplet into a hexagonal platelet in
detail, comparing experimental observations to predictions of

FIG. 1. Shape-Shifting Droplets. Main stages of the droplet shape
evolution, following Refs. [5, 9]: the initially spherical droplets be-
come icosahedral due to the interplay of topology and elasticity.
Subsequently, the droplets flatten into hexagonal platelets which then
evolve into triangles or quadrilaterals. The evolution of polygonal
droplets was studied theoretically in Ref. [20]; the analysis of the
flattening process is the subject of this paper.
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FIG. 2. Droplet shape evolution observed in reflected light. Top row: microscopy images obtained upon cooling of a hexadecane emulsion
droplet immersed in 1.5 wt.% Tween 60 surfactant solution; scale bars: 10 µm. Bottom row: sketch of side view of droplet deformations.
Dotted circles and ellipses show the part of the drop observed in reflected-light experiments. (a) Before the drops start to deform, the aqueous
film formed between the top of the drop and the wall of the glass capillary appears as circular Newton rings in reflected light. (b) The emulsion
film deforms into a triangular shape when the drop begins to deform. Black arrows show three of the 12 vertices formed on the drop surface
at this stage. (c) Upon further cooling, the triangular film expands until its corners engulf the three vertices at the periphery of the droplet that
are situated above the equatorial plane of the icosahedral droplet. The three vertices forming the bottom surface of the drop appear as bright
spots. (d) As the flattening process continues, pairs of vertices of the icosahedron come closer to each other: the droplet becomes octahedral.
(e) As the droplet flattening completes, six pairs of vertices merge and the drop becomes a hexagonal platelet.

mathematical models describing either mechanism to decide
which mechanism underlies the observed phenomena.

Thus, using reflected-light microscopy, we reveal how an
icosahedral droplet flattens via an intermediate octahedral
stage. Through a linear stability analysis and numerical cal-
culations, we show that the rotator phase mechanism can re-
produce the observed flattening dynamics for suitable choices
of the microscopic law describing the formation of the rota-
tor phase. The elastic buckling mechanism however can only
reproduce the observed deformations if surface tension de-
creases by a least four orders of magnitude, so that the droplet
evolution is driven by the interplay of elasticity and buoyancy.
The analysis therefore suggests that it is formation of rotator
phase rather than elastic buckling at low surface tension that
drives the droplet shape evolution.

II. EXPERIMENTAL FLATTENING DYNAMICS

The flattening of the shape-shifting droplets under cooling
and the stages of the droplet evolution intermediate between
the initial spherical stage and the later flattened stages were
observed using reflected-light microscopy to determine the
three-dimensional shapes of the droplets at different stages of
evolution. The experimental setup is described inAppendixA.

The droplets are initially spherical. Two well-defined types
of images can be observed, depending on the position of the
focal plane of the microscope: first, if the microscopy focus
is on the top of the drop, just below the level of the upper
wall of the glass capillary containing the emulsion, circular
diffraction fringes (Newton rings) are seen [Fig. 2(a)]. These
fringes emerge from the interference of the light reflected from

(a) (b)

FIG. 3. Initial stages of the droplet shape deformations observed
in reflected light with focus on the equatorial plane of the droplet.
(a) Before the droplet starts to deform, the droplet equator appears
as a homogeneous bright circle. (b) As the drop begins to deform,
twelve vertices are observed: dark dots and bright spots (marked with
black and white arrows) represent, respectively, the vertices at the top
and bottom surfaces of the droplet. The remaining six vertices are
located the drop periphery, just above and below the equatorial plane
of the droplet. Scale bars: 10 µm.

the two surfaces of the aqueous film, formed between the
wall of the glass capillary and the surface of the spherical oil
droplet [Fig. 2(a)]. Second, if the microscope is focused on the
equatorial plane of the droplet instead, a bright circle around
the particle periphery is observed, due to light refraction and
reflection at the drop surface [Fig. 3(a)].
Deformation of the droplets begins with the appearance of

twelve vertices on the drop surface [Figs. 2(b) and 3(b)]. With
the focal plane at the droplet equator, all twelve vertices can be
observed simultaneously as three black dots (representing the
three upper vertices next to the glass capillary), threewhite dots
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(representing the three vertices at the bottom of the droplet)
and six bright spots at the drop periphery [Fig. 3(b)]. The latter
correspond to three vertices just above and three vertices just
below the equatorial plane of the droplet, which explains why
they have a slightly different appearance in the microscopy im-
ages of Fig. 3(b). As a result, the spherical shape of the drop is
distorted and the droplet soon acquires an icosahedral shape;
we note that this ideal shape transformation is, however, only
observed in some of the systems under appropriate conditions
such as slow cooling [5, 9]. At the same time, the aqueous film
between the glass capillary and the oil droplet acquires an ap-
proximately triangular shape with rounded corners [Fig. 2(b)].
Upon further cooling, the drop continues to deform so that this
aqueous film appears as an equilateral triangular shape with
sharp corners [Fig. 2(c)].

As cooling continues, this triangular film increases its area
significantly. At the same time, the cross-section of the droplet
equator also increases in size. Since the volume of the droplet
is conserved, the droplet flattens in the perpendicular direction.
Although the droplet looks like a hexagonal prism in transmit-
ted light at this stage, the images in reflected light reveal that
the three-dimensional drop shape is better represented as a
distorted flattened icosahedron [Fig. 2(d)]. The flattening of
the icosahedral droplet drives pairs of vertices closer to each
other, so that the droplet assumes the shape of a flattened oc-
tahedron. Eventually, pairs of vertices can merge to form true
hexagonal platelets [Fig. 2(e)], but the details of this final step
depend on the system (Appendix A).

To understand these complex droplet shape deformations,
we derive theoretical models corresponding to the two pro-
posed mechanisms [5, 8, 9, 14–16] in the next section.

III. MODEL

On purely combinatorial grounds, the appearance of octa-
hedral droplets as the vertices of the initial icosahedron merge
during the flattening process is not suprising: indeed, the oc-
tahedron is one of only two polyhedra with six vertices that
can be obtained by edge contraction from an icosahedron, and
the only one that does not require additional symmetry break-
ing (Appendix B). Static, entropic considerations of this ilk
cannot however capture the dynamics of the problem: as in
our previous theoretical description of the dynamics of flat-
tened polygonal droplets [20], describing the deformations of
a polyhedron requires (i) a (non-dimensional) energy E , and
(ii) a kinetic law that relates the variations of the energy to the
normal velocity of the edges of the polyhedron.

In this paper, we model the polyhedral droplets as convex
polyhedra of fixed volume, with flat faces. Throughout the
paper, we will use E and F to denote, respectively, the set of
edges and faces of such a polyhedral droplet.

A. Droplet Energy

In this section, we derive different energies describing the
twomechanisms that have been proposed to underlie the shape-
shifting phenomena [5, 8, 9, 14–16].

1. Rotator phase mechanism

For the rotator-phase mechanism, the energy has contribu-
tions from surface tension and from the rotator phase. Ex-
tending the energy we have derived to describe the polygonal
stages of the droplets [20] to the polyhedral case,

E1 =
∑
f ∈F
‖ f ‖ − α

∑
e∈E
‖e‖F

(
δ(e)

)
, (1)

wherein, as in our previouswork [20], the coefficientα depends
on temperature and has the scaling α ∼ Ar∆µ/γR, in which
Ar is a characteristic cross-sectional area of the rotator phase,
∆µ = µl − µr > 0 is the difference of the chemical potentials
(per unit volume) of the liquid and rotator phases, γ is the
coefficient of surface tension and R ≈ 10 µm is a typical radius
of the shape-shifting droplets [5].
The function F encodes the dependence of the formation of

rotator phase on the dihedral angle δ(e) at edge e. This function
did not arise in our previous work [20], for it is constant during
the polygonal stages of the shape evolution. The detailed
functional form of F is set by the microscopic properties of
the rotator phase, but we expect F to be a decreasing function
of δ(e), with

F(0) > F
(
δ(e)

)
> F(π) = 0, (2)

so that no rotator phase is formed when the two faces adjacent
to edge e are parallel to each other, while the tendency to form
rotator phase is maximal when the two faces have folded on
top of each other.

2. Elastic buckling of a frozen monolayer

For the elastic buckling mechanism, the energy has a first
contribution from surface tension, and a second contribution
from surface elasticity. In the regime of sharp elastic ridges
relevant to our discussion, the elastic energy is dominated by
the contributions from the ridges [21]. Invoking the scaling
properties of these elastic ridges derived in Ref. [22],

E2 =
∑
f ∈F
‖ f ‖ + β

∑
e∈E
‖e‖1/3

(
π − δ(e)

)7/3
, (3)

where δ(e) again denotes the dihedral angle at edge e, and
wherein the coefficient β depends on temperature and has the
scaling β ∼ Eh8/3/γR5/3, in which E is the elastic modulus of
the frozen surfactant adsorption layer, h is its thickness, and,
as before, γ is the coefficient of surface tension and R ≈ 10 µm
is a typical radius of the shape-shifting droplets.

Upon including an additional buoyancy term B, this energy
becomes instead

E ′2 = E2 + BoB, (4)

wherein the non-dimensional Bond number Bo = ∆ρ gR2/γ
measures the relative magnitude of buoyancy and surface ten-
sion effects [23]. Here, ∆ρ ≈ 250 kg/m3 is the density differ-
ence between the water and oil phases [24], and g ≈ 9.81 m/s2

is the acceleration due to gravity.
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There is no consensus on the value of γ at the temperature
Td at which the deformations are first observed [8, 9, 16], and
the proponents of the elastic bucklingmechanism indeed argue
that the observed deformations are driven by ultra-low values
of γ [14–16]. Nevertheless, using the estimate γ ≈ 5 mN/m
above Td that the different experimental analyses [8, 9, 16]
agree on, we estimate Bo ≈ 10−4, and conclude that γ must
decrease by at least four orders ofmagnitude during the cooling
for buoyancy effects to play a role.

Using the rotator phase mechanism, we have previously
described the platelet stages of the droplet evolution by mod-
elling the droplets as polygons [20]. There, disproportionation
of the sidelengths of a polygonal droplet of fixed area is en-
ergetically favourable because, among all polygons of a fixed
number of vertices and fixed area, the regular one has the least
perimeter [25]. By contrast, in the elastic bucklingmechanism,
disproportionation of the sidelengths of a polygonal droplet is
energetically favourable because the second term in Eq. (3) is
a concave function of edge length [26].

B. Kinetic Law

In our previous theoretical description of the polygonal
stages of the droplet evolution [20], we imposed a simple ki-
netic law [27], that the normal velocity of the sides be propor-
tional to the energy gradient. The three- and non-dimensional
analogue of this kinetic law is

−δE =
∑
e∈E

∫
e

Ûrn · δrn d`. (5)

wherein rn is the normal displacement of edge e of the poly-
hedron. Consider the edge joining vertices a and b, and let t
denote the unit tangent parallel to it (Fig. 4). As the polyhedron
deforms from its initial shape, described by some variables x,
to a new shape described by x + δx, these vertices are mapped
to a′ = a + A · δx and b′ = b + B · δx. Hence, assuming that
the edges stretch uniformly, a point r = a + (b − a)s, where
0 6 s 6 1, is mapped to r + R · δx, with R = A + (B − A)s, as
shown in Fig. 4.

Let P = I − t t denote projection onto the plane normal to t.
Then δrn = P · R · δx and so Ûrn = P · R · Ûx. Using P2 = P, it

a

b

t

r

a′

b′

r ′

δrn

FIG. 4. Derivation of the kinetic law: definition of the normal
displacement δrn of a point r on the edge parallel to t and joining the
vertices at a and b that move to a′ and b′ as the polyhedron deforms.

follows that∫
e

Ûrn · δrn d` = ‖e‖Pi jδxk Ûx`
∫ 1

0
RikRj` ds, (6)

with, upon letting S = A + B,∫ 1

0
RikRj` ds =

1
6

(
SikSj` + Aik Aj` + BikBj`

)
. (7)

The factor 1/6 in this equation can and will be scaled out by
rescaling time. Thence

− ∂E
∂xk

δxk = Ûx`δxk
∑
e∈E
‖e‖Pi j

(
SikSj` + Aik Aj` + BikBj`

)
,

(8)

which leads to the overdamped evolution equation

Ûx = −M−1∇E, (9)

wherein

M =
∑
e∈E
‖e‖

(
S>PS + A>PA + B>PB

)
. (10)

We shall refer to M as the mobility matrix. A more standard
kinetic law [27] would instead involve the normal velocity of
the faces being proportional to the energy gradient. We have
not chosen this kinetic law, since the motion is driven by the
edges of the polyhedron, rather than by its faces. Nevertheless,
the equations corresponding to this second kinetic law can be
derived by analogous reasoning, and we have checked that
choosing this kinetic law yields qualitatively similar results.

IV. RESULTS

A. Linear Stability Analysis

A necessary (albeit not sufficient) condition for droplet flat-
tening is that the initial regular icosahedron be unstable to small
perturbations. For the linear stability analysis, we describe the
icosahedron by means of the coordinates x = (x1, . . . , x12) of
its vertices and introduce the Lagrangian

L = E − λV, (11)

wherein

V =
∑

(k,`,m)∈F

��xk · (x` × xm)
�� (12)

is the volume of the icosahedron, and λ is the Lagrange multi-
plier imposing volume conservation. Let x∗ denote the coor-
dinates of the platonic icosahedron; imposing ∇L

(
x∗, λ∗

)
= 0

yields the corresponding value λ∗ of the Lagrange multiplier.
TheHessian for this stability problem isH = P

(
∇∇L

)
P, where

the matrix P = I − vv describes the projection onto the kernel
of v = ∇V

(
x∗, λ∗

)
[28]. We note in passing that, since the

mobility matrix is invertible and therefore an isomorphism, it
does not affect the stability analysis.
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FIG. 5. Stability of the platonic icosahedron for the rotator phase
mechanism. The stability boundary is shown in

(
F ′(δ∗), F ′′(δ∗)

)
space for different values of α > 0. Only the region with F ′(δ∗) < 0
is expected to be physically relevant.

1. Rotator phase mechanism

For each face (k, `,m) ∈ F , we define

nk`m = ±
(
xk × x` + x` × xm + xm × xk

)
(13)

to be its outward normal, so that Eq. (1) becomes

E1 =
∑

(k,`,m)∈F

1
2 ‖nk`m ‖ − α

∑
(k,`,m)∈F
(k,`,n)∈F

‖xk − x`‖F(δk`mn), (14)

wherein δk`mn is defined by

cos δk`mn =
nk`m · nk`n
‖nk`m ‖ ‖nk`n ‖

. (15)

Formally, we may write

H∗ = S∗ − α
(
F(δ∗)A∗ + F ′(δ∗)B∗ + F ′′(δ∗)C∗

)
, (16)

where the matrices A∗,B∗,C∗,S∗ are purely geometric, and
where δ∗ ≈ 138.2◦ is the dihedral angle of the platonic icosa-
hedron. We set F(δ∗) = 1 without loss of generality. We
sketch the calculations leading to expressions for these matri-
ces in Appendix C.

Evaluating these expressions numerically [29] using Mat-
lab (The MathWorks, Inc.), we find in particular that S∗ is
positive semi-definite, so the platonic icosahedron is stable if
α = 0, as expected. The matrices A∗,B∗ are indefinite, but
C∗ is positive semi-definite. It follows that, for α > 0, a
regular icosahedron is unstable provided that F ′′(δ∗) is large
enough. More generally, the stability boundary for α > 0
can be computed numerically by a bisection search; results
are shown in Fig. 5. Kinks in the curves defining the stability
boundary indicate different eigenvalues crossing zero at the
stability boundary. We conclude that a regular icosahedron is
unstable to small perturbations for appropriate choices of the
microscopic law F. For a fixed choice of microscopic law,

only droplets that are small enough (i.e. have large enough
values of α) deform; larger droplets are stable (Fig. 5). The
rotator phase mechanism can thus explain the deformations
away from the initial platonic icosahedron.
The above analysis can be extended to any platonic solid.

In the particular case of a regular octahedron, the geometry
of the eigenmodes is much simpler, and we therefore discuss
these eigenmodes briefly in Appendix D.

2. Elastic buckling mechanism

For the elastic buckling mechanism (in the absence of the
buoyancy term), starting from Eq. (3), a similar calculation
leads to the expression H∗ = S∗ + βD∗, in which the purely ge-
ometric matrices D∗,S∗ are found to be positive semi-definite
upon numerical evaluation [29], and hence H∗ is positive semi-
definite, too, for any β > 0, since the sum of positive semi-
definite matrices is positive semi-definite. The key conclusion
from the stability analysis is therefore that the elastic buck-
ling mechanism cannot explain the deformations of the initial
icosahedron unless buoyancy effects become important.

B. Droplet Flattening

The linear stability analysis has revealed necessary condi-
tions for the initial regular icosahedron to deform under either
mechanism. Larger deformations, and, in particular, flatten-
ing, of the polyhedral droplets must however be studied nu-
merically.
The experimental data suggest that the icosahedron flattens

symmetrically (Fig. 2), and hence that the four parallel equilat-
eral triangles that define a platonic icosahedron (Fig. 6) remain
equilateral during the flattening, although their relative posi-
tionswith respect to the flattening axis changes. (It is only after
the icosahedron has flattened that this symmetry broken as the
polygonal droplets deform. In other words, the component of
the initial perturbations of the icosahedron corresponding to

z = H4
z = −h4

z = 0
z = h4

z = −H4

R
r

r
R

FIG. 6. Simplified model of a symmetric icosahedron. Four parallel
equilateral triangles that are symmetric with respect to the midplane
of the polyhedron define a symmetric icosahedron in terms of their
circumradii r, R and vertical positions ±h,±H. Inset shows defini-
tions of variables r, R, h,H, and orientations of the four equilateral
triangles.
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δr

δHδR

α=∞

α=0.4

(a)

(b) (c)

(d)

FIG. 7. Flattening of a symmetric icosahedron under the rotator phase mechanism. (a) Snapshots of a slightly perturbed platonic icosahedron
flattening into a (non-platonic) octahedron, for α = ∞, and for the microscopic law F(δ) ∝ π3 − δ3. (b) Role of the microscopic law: for a
different microscopic law, here F(δ) ∝ π − δ, but the same initial perturbation, the icosahedron does not flatten into an octahedron. (c) Role of
the initial perturbation: for the same microscopic law, but a different initial perturbation, the icosahedron does not flatten either. (d) Three of the
four parameters defining the symmetric icosahedron (Fig. 6, inset) can be chosen as a basis for perturbations away from the regular icosahedron.
Shape outcomes for such perturbations of fixed magnitude ε = 0.02 are then mapped onto the surface of a sphere. The boundary between those
initial relative perturbations leading to flattening into an octahedron and those that do not lead to flattening are shown for F(δ) ∝ π3 − δ3 and
different values of α.

these asymmetric deformations is so small that it remains small
during the entire flattening process.) This suggests using a
simplified representation of a symmetric icosahedron, defined
by four parallel equilateral triangles (Fig. 6) for the numerical
calculations. Such an icosahedron is defined in terms of four
variables (Fig. 6, inset); one of these can be eliminated using
the volume conservation constraint (Appendix E).

We solve equation (9) governing the deformations of the
icosahedron numerically using the stiff solver ode15s of Mat-
lab (The MathWorks, Inc.).

1. Rotator phase mechanism

We begin by considering the rotator phase mechanism and
the limit α = ∞ where the tendency to form rotator phase
swamps the stabilising effect of surface tension. Our first
observation is that a (slightly perturbed platonic) symmetric
icosahedron may indeed flatten into an octahedron [Fig. 7(a)]
under the rotator phase mechanism: as the icosahedron flat-
tens, the top and bottom equilateral triangles expand faster
than the middle ones, leading to six pairs of vertices merging
to yield a (non-platonic) octahedron, in qualitative agreement
with the shape evolution seen in experiments. This evolution
depends on the choice of the microscopic law F(δ) and the
initial perturbation. As far as the choice of F(δ) is concerned,
flattening occurs for example for F(δ) ∝ π3 − δ3 [Fig. 7(a)],
but does not occur for the simplest law in agreement with con-
ditions (2), F(δ) ∝ π− δ [Fig. 7(b)]. We have checked that the
behaviour in Fig. 7(a) is representative of the behaviour ob-
served for sufficiently concave choices of the microscopic law
F(δ) that verify conditions (2). As far as the initial perturba-
tions are concerned, flattening similarly occurs for some, but
not all perturbations of the regular icosahedron [Fig. 7(a),(c)].

To explore the latter effect and the role of surface tension,
we consider relative perturbations, of fixed magnitude ε, of
the parameters defining the symmetric icosahedron (Fig. 6,
inset). Taking three of these parameters as the basis for the

perturbations without loss of generality, we map the shape
outcomes for the corresponding initial perturbations onto the
surface of a sphere [Fig. 7(d)]. A boundary divides those
initial perturbations that lead to flattening to those that do not,
and we observe that this boundary does not strongly depend
on α [Fig. 7(d)]. Physically, the initial perturbation is set by
the buoyancy of the droplets. Using the coordinates r, R, h
defined in the inset of Fig. 6, we expect the physically relevant
initial perturbations of the droplets to be those with δH < 0
and δr, δR > 0, for which the droplet indeed flattens into an
octahedron.

We conclude that, for an appropriate choice of microscopic
law, our model of the rotator phase mechanism predicts flat-
tening in qualitative agreement with the experimental obser-
vations for physical initial perturbations of the icosahedron.

(a) (b) (c)

FIG. 8. Flattening of a symmetric icosahedron under the elastic
buckling mechanism for different values of B = Bo/β. (a) Flattening
of a platonic icosahedron into a (non-platonic) octahedron. (b) If B
is too small, the icosahedron settles into an unflattened steady state.
(c) If B is too large, the faces connected to the top face flatten into its
plane, inconsistent with experimental observations.
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2. Elastic buckling mechanism

The stability analysis in the previous section has revealed
that the regular icosahedron is a stable fixed point if buoyancy
does not play a role, Bo = 0. We therefore consider the case
Bo > 0, in which the regular icosahedron is therefore no longer
a fixed point of the energy E ′2. We begin by analysing the limit
of low surface tension, in which β,Bo � 1 and the dynamics
depend on the single parameter B = Bo/β. Numerically, we
find that there is an intermediate range, B− < B < B+, in which
the platonic icosahedron flattens into an octahedron [Fig. 8(a)].
We estimate B− ≈ 7 and B+ ≈ 140. If B < B−, the droplet
settles into a steady state before reaching an octahedral shape
[Fig. 8(b)]. If B > B+, the three faces adjacent to the top
face flatten into its plane [Fig. 8(c)]. Thus, the droplet evolves
into a hexagonal prism as the top triangle continues to expand.
This is inconsistent with the experimental observation that the
top plane remains triangular [Fig. 2(c)], and does not become
hexagonal until the end of the flattening.

Qualitatively similar results are obtained at non-zero sur-
face tension; because of its stabilising effect, B− increases
with increasing surface tension. We conclude that the elastic
buckling mechanism predicts flattening in qualitative agree-
ment with the experimental observations if buoyancy effects
are neither too strong nor too weak.

To obtain more quantitative estimates, we notice the scal-
ing B ∼ ∆ρ R11/3/Eh8/3, wherein, as before, E is the elastic
modulus of the frozen surfactant monolayer and h is its thick-
ness, g ≈ 9.81 m/s2 is the acceleration due to gravity, R is the
droplet radius, and ∆ρ ≈ 250 kg/m3 is the density difference
between the water and oil phases. Hence the bending modulus
of the frozen surfactant layer is

K = Eh3 ∼ ∆ρ gR11/3h1/3

B
. (17)

Usefully, this allows us to obtain an upper bound on K without
having to estimate the surface tension, which does not appear in
this expression: denote by R− the radius, corresponding to B−,
of the smallest droplet that can flatten; previous work [5] has
shown R− < 5 µm. Taking h ≈ 2 nm [30], we thus obtain that
K < 2 · 10−20 J is required for flattening into an octahedron.
By contrast, direct measurements of the bending moduli of
shape-shifting droplets in Ref. [14] led to the lower bound
K > 103 kBT & 3 ·10−18 J, more than two orders of magnitude
above the present upper bound.

V. CONCLUSION

In this paper, we have analysed the flattening of shape-
shifting droplets experimentally and theoretically. Models of
the two candidate mechanisms have reproduced the evolution
of an icosahedral droplet into a flattened octahedral shape
in qualitative agreement with the experimental observations.
The elastic buckling mechanism, however, can only reproduce
the experimental observations if surface tension decreases by
at least four orders of magnitude during the cooling, so that
the flattening is driven by a competition between buoyancy

and elasticity. Moreover, the resulting estimate of the bend-
ing modulus of the surfactant adsorption layer is two orders
of magnitude too low. All of this strongly indicates that the
‘shape-shifting’ droplet phenomena are driven by formation
of rotator phase rather than elastic buckling of the frozen sur-
factant adsorption layer at ultra-low surface tension.
While the simple models used in this paper to represent

the droplets as true polyhedra could thus reproduce the ex-
perimental flattening dynamics qualitatively, it is important to
recognise that the faces of the actual droplets do not remain
flat, but deform due to elasticity and surface tension. Similarly,
these simple models do not take into account the dynamics of
elastic defects in the surface. Repeating the computations in
this paper for deformable faceted elastic surfaces with defects
remains a formidable numerical challenge. Fully resolving the
defect energetics would also make possible a more detailed
analysis of the merging of the defects at the very latest stages
of the flattening.
Some questions more specific to the rotator phase mecha-

nism also remain open: in particular, how does the dependence
of the energy on the dihedral angle, encoded in the functional
form of F(δ), relate to properties of the rotator phase and the
phase change? Deriving this microscopic law from first prin-
ciples would remove some of the arbitrariness in the present
analysis, where we chose a functional form ad hoc for lack of
knowledge about the detailed physics involved, even though,
as noted previously, the qualitative behaviour of the model
does not depend strongly on these details. The impact of the
kinetics of phase change on the droplet evolution also remains
unclear.
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Appendix A: Experimental Methods and Details

Oil emulsion droplets were observed in glass capillaries
placed inside a thermostatic chamber below the objective of
the microscope (Fig. 9), as described previously [5, 9]. Obser-
vations were performed with an upright optical microscope in
reflected white light. Due to the buoyancy force, oil droplets
float just below the upper wall of the glass capillary [Fig. 9(b)].
The aqueous film formed between this wall and the upper sur-
face (closest to the capillary) of the droplet was observed in
reflected light.
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FIG. 9. Experimental setup for reflected-light microscopy of droplet
deformations. (a) Emulsions are examined in a glass capillary placed
inside a thermostatic chamber for microscopic observations during
cooling. (b) Side view: due to buoyancy, oil droplets float just below
the top surface of the capillary, under the objective of the microscope.

As mentioned in the main text, the details of the final step of
the droplet flattening depend on the emulsion system: for those
systems in which no asperities (long cylindrical protrusions
from the platelet corners) are formed, i.e. in Group B systems
according to the classification of Ref. [9], pairs of vertices
eventually merge to form true hexagonal platelets [Fig. 2(e)].
By contrast, in those systems in which asperities do form, i.e.
in Groups A and C of Ref. [9], the merging of the vertices also
drives the transition from an octahedral droplet into tetragonal
or triangular plates (Fig. 10).

Appendix B: Classification of a Family of Polyhedra

In this appendix, we classify polyhedra that can be obtained
by edge contraction from an icosahedron. Starting from an
icosahedron, we thus contract edges to reduce the number of
vertices of the polyhedron. Representing each polyhedron by
its undirected edge graph G = (V , E ) of vertices V and edges
E , we classify, numerically and up to isomorphism, the 105
graphs of at least six vertices obtained by edge contraction in
this way. (Such a classification is of course a hard problem
in general, but the graphs are small enough for classification
by brute force to be straightforward.) Requiring these graphs
to correspond to true polyhedra, we require that any edge be
adjacent to exactly two faces, and that, for any v ∈ V , G \v be
connected. Geometrically, these conditions ensure that there
are no loose planes or segments, and that the polyhedron is
not the union of two smaller polyhedra glued together at a
vertex or along an edge. Physically, such deformations would
strongly cinch in the droplet surface, and are thus energeti-
cally unfavourable. Upon discarding graphs not satisfying this
conditions, we are left with 44 polyhedra.

The edge graphs of these 44 polyhedra are shown in Fig. 11.
In particular, we find that there are only two possible polyhe-
dra on six vertices: an octahedron, or a triple tetrahedron (that
is, three tetrehadra glued together along their faces). Interest-
ingly, random edge contractions from the icosahedron result in
an octahedron with approximate probability 0.11 only, com-
pared to 0.89 for the triple tetrahedron. Formation of a triple
tetrahedron requires additional symmetry breaking, though.
For this reason, and from this purely combinatorial analysis,

the octahedron is to be expected as an intermediate step in the
evolution of the icosahedron.

Appendix C: Details of the Linear Stability Calculation

In this appendix, we sketch the derivation of expressions for
the different terms that appear inEq. (16). SubstitutingEq. (14)
into expression (11) for the Lagrangian, and differentiating,

∂L1
∂xi
= si − α

(
f∗ai + f ′∗ bi

)
− λ∗vi, (C1)

∂2L1
∂xi∂x j

= Sij − α
(

f∗Aij + f ′∗Bij + f ′′∗ Cij

)
− λ∗Vij, (C2)

where f∗ = F(δ∗), f ′∗ = F ′(δ∗), f ′′∗ = F ′′(δ∗), and where
the vectors si, ai, bi, vi and matrices Sij,Aij,Bij,Cij,Vij can be
expressed as sums of simpler expressions, obtaining which
is a mere lengthy and unpleasant exercise in differentiating
vectors and their products. Solving for λ∗ using Eq. (C1) and
one component of ∂L1/∂x = 0 yields

λ∗ = s∗ − α
(
a∗ f∗ + b∗ f ′∗

)
, (C3)

where s∗, a∗, b∗ are scalars. We check post facto that this choice
of λ∗ indeed leads to all 36 components of ∂L1/∂x vanishing.
Hence Eq. (C2) becomes

∂2L1
∂xi∂x j

= S∗ij − α
(

f∗A∗ij + f ′∗B∗ij + f ′′∗ C∗ij
)
, (C4)

wherein

S∗ij = Sij − s∗Vij, A∗ij = Aij − a∗Vij, (C5a)
B∗ij = Bij − b∗Vij, C∗ij = Cij. (C5b)

Assembling these matrices into four 36× 36 matrices made of
these 3 × 3 blocks, we obtain Eq. (16).

Appendix D: Eigenmodes of a Regular Octahedron

In this appendix, we discuss the linear stability analysis of a
regular octahedron. Expanding about the platonic octahedron,
we may write H‡ = S‡ − α

(
F(δ‡)A‡ + F ′(δ‡)B‡ + F ′′(δ‡)C‡

)
,

as in Eq. (16), where δ‡ ≈ 109.5◦ is the dihedral angle of a
platonic octahedron, and where the purely geometric matrices
A‡,B‡,C‡,S‡ are found numerically. What makes the case of
the regular octahedron simpler is the fact that A‡,B‡,C‡,S‡
commute pairwise, and hence can be diagonalised simultane-
ously [32].
Simultaneous diagonalisability means that stability bound-

aries can be computed analytically as the intersection of planes,
but, here, we shall merely point out that the simultaneous
eigenmodes are geometrically ‘nice’. Indeed, of the 6×3 = 18
simultaneous eigenmodes [33], 7 are neutral modes, corre-
sponding to three rotations, three translations, and a scaling
mode (the latter is neutral since it is not volume-preserving).
The remaining 11 eigenmodes divide into four eigenspaces for
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(a) (b) (c) (d) (e)

FIG. 10. Merging of the vertices of a polyhedral drop with formation of asperities. This experiment was performed with a hexadecane emulsion
droplet, immersed in 1.5 wt.% Brij 58 surfactant solution. Merging of vertices causes the octahedral stage (panel b) to disproportionate
(panel c), leading to the formation of a tetragonal platelet with asperities (panel e). Scale bars: 10 µm.

icosahedron

octahedrontriple tetrahedron

FIG. 11. Classification of polyhedra of a least six vertices obtained by edge contraction from an icosahedron. Edge graphs of the 44 polyhedra
obtained are shown, with lines between polyhedra indicating possible edge contraction paths. Line widths are proportional to the probability
that a random walk starting from the icosahedron passes through a particular transition. Small probabilities are represented by dotted lines.
The icosahedron, octahedron, and triple tetrahedron are labelled.

which bases aligned with the symmetry axes and planes of the
octahedron can be picked, as shown in Fig. 12.

It is natural to wonder whether there is a deeper reason
for this simplification in the case of the octahedron. We do
not have an answer to this question, but note that eigenmodes
must respect the symmetries of the polyhedron. It is therefore
tempting to speculate that, in the case of the octahedron, the
existence of a common eigenbasis is caused by the fact that
there are simply not enough eigenmodes that are available (i.e.
allowed by the symmetries of the octahedron).

Appendix E: Symmetric Icosahedron Model

In this appendix, we derive the volume conservation con-
straint for the symmetric icosahedron model. Up to scaling,
we may take r∗ = 1 for the regular icosahedron. Using an
explicit coordinate representation of the icosahedron, we then
obtain

R∗ =

√
5 − 1
2

, H∗ =

√
5 + 1
4

, h∗ = −3 −
√

5
4

, (E1)
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with coordinates r, R,H, h defined as in the inset of Fig. 6. The
volume conservation constraint thus takes the form

[
(r + R)2 + r2

]
H − R(2r − R)h = 5

2

(√
5 − 1

)
. (E2)

We use this relation to eliminate h. Next, using Mathematica
(Wolfram, Inc.), we derive expressions for the coefficients
of the mobility matrix, from Eq. (10), and for the energy
gradient. These expressions, albeit too large to reproduce here,
are easily evaluated numerically and given in the Supplemental
Material [29].

(a) (b)

(c) (d)

FIG. 12. Non-trivial eigenmodes of a regular octahedron. Dimen-
sions of the four eigenspaces are: (a) dim = 3, (b) dim = 3, (c)
dim = 2, (d) dim = 3.
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